Using Big Data to Optimise Tertiary Education Facility Operations

TEMC 2015

Cara Ryan https://au.linkedin.com/in/cararyan1

IoT Provides Opportunities in Buildings

Changing Education Methods and Impact

Campus Space

Constructed Space Since 1880

Campus Density

State of Facilities in Higher Education 2014 Best Practices, Benchmarks and Trends, Sightlines

Critical Drivers are Impacting All Industries

Buildings are a Huge Energy Drain

Buildings are a Huge Energy Drain

40% of the world's energy is used in buildings

Lifecycle Costs

20%

Only 20% of facility managers use 80% of the available capabilities in their building management systems

\$75%

75 percent of a building's cost over its lifetime will go toward maintenance and operating expenses

BMS and Dashboards

BMS:

- > Review graphics
- > View Alarms
- > Set up Trends

Energy Dashboards:

- > Metrics
- > Manually spot trends
- > Indicate where inefficiencies may be

Confidential Property of Schneider Electric

aFDD

Automated Fault Detection and Diagnostics:

- > Hierarchical
- > Rule-based
- > Rules are inter-related
- > Identify likely root causes
- > Prioritises faults based on their impact
- > Monetises wastage

AFFD Examples

Common Plant Type	Typical Items Checked
AHU Coils	AHU CoilsPreheating, cooling, heating, dual temp, and heat recovery coilsSupply air temp, humidity, dewpoint setpoint trackingReturn air temp, humidity, dewpoint setpoint trackingSupply/Return reset scheduleCoil discharge temp trackingCoil leaking or stuck coilCoil short cyclingSimultaneous coil operation or demandSimultaneous heating and coolingCompressor issuesGas valve issues
AHU Economiser	AHU EconomizerBroken flow sensorDamper short cyclingMinimum outdoor air damper/flow issuesImbalanced air flowsReturn air CO2 trackingMixed air temp sensor issuesMixed air temp setpoint trackingInefficient economizingExcess mechanical cooling - Economizing + heatingFresh air fractionStuck damper
AHU Exhaust	AHU Exhaust FanExhaust fan running when AHU offExhaust static pressure sensor drift No air flow when exhaust fan onExhaust air flow trackingExhaust static pressure tracking Exhaust air temp trackingExhaust fan short cyclingAbnormal exhaust fan currentExhaust fan and occupancyExhaust vfd fan speed constant
AHU Fan	AHU Supply/Return FanFan speed feedback issuesFan running when AHU offFan static pressure sensor driftNo air flow when fan onAir flow setpoint trackingAir static pressure tracking and resetFan short cyclingAbnormal fan currentFans and occupancyVFD fan speed is constant

AFFD Examples

Common Plant Type	Typical Items Checked
Chiller Efficiency	Chiller EfficiencyChiller performance (efficiency, NPLV, heat balance, COP)Low efficiency Bad heat balance
CHW Loop	CHW Primary LoopSetpoint is zeroSupply/return temp setpoint and reset tracking Underloaded loopLoop differential pressure setpoint and reset trackingHigh/low differential pressure setpointNo flow, pumps onWater flow setpoint trackingSystem on with no demandVFD installation
Cooling Plant	Cooling Plant OperationsChiller status vs run commandToo many/not enough pumps runningUncoordinated free cooling isolation valvesUncoordinated chiller isolation valves CW fan and pump simultaneous operationPumps on while cooling off

Software Example

Equipm Analysis	ent s		Weekly Monthly	*End Date: 15/07/2014					
Generate E	Data				Download Download	d Curr	ent Diag	nostics	Page
35 data records Building	s found for 15/07/201- Equipment	4 to 15/07/2014 in daily Analysis	/ intervals. <u>Start Date</u>	Notes Summary	Cost	<u>E</u>	<u>c</u>	М	Actions
Australia Office	AHU-7 (Air Handler)	AHU Coils	15/07/2014	Simultaneous heating and cooling. Pre-heat coil discharge temp lower than setpoint. Leaking heating valve.	\$204	10	-	1_0 6	•
Australia Office	AHU-4 (Air Handler)	AHU Coils	15/07/2014	Simultaneous heating and cooling. Supply temp higher than setpoint. Leaking cooling valve. Heating occurring over open cooling coil. Supply air temperature short cycling.	\$113	10		6	
Australia Office	AHU-5_VentSys (Ventilation System)	VAV System Reheats	15/07/2014	Excessive reheating.	\$24	8			,
Australia Office	Апо-5 (Air Handler)	AHU Fan	15/07/2014	Fan on while unoccupied.	\$5	2	à	4	•
Australia Office	PrimaryHWLoop (Heating System)	HW Loop	15/07/2014	Low loop temp difference. Supply temp higher than setpoint.	\$4	3		1-1-5	•

Analytics Examples

- > Collects, stores and trends building data
- > Automatically detects anomalies
- > Prioritises:
 - Energy waste
 - Comfort issues
 - Operational inefficiencies

Confidential Property of Schneider Electric

Analytics Examples

- > Collects, stores and trends building data
- > Automatically detects anomalies
- > Prioritises:
 - Energy waste
 - Comfort issues
 - Operational inefficiencies

Analytics Examples - Chiller Efficiency

Deployment Options

Analytics Solution	Pros	Cons
Embedded Analytics	 Installed from day 1 	Not sufficiently developed todayNot cost effective today
Custom Built System	FlexibleTailored	 High Cost Staff to deploy and operate IT and cyber security responsibility Difficult to deploy across multiple sites
SaaS	 Automated Web based Lowest deployment cost Easy to deploy across multiple sites 	 Reliant on staff to operate and manage Potential Cyber security concerns
MSaaS	 Automated Expert analysis and monitoring Lower deployment cost Easy to deploy across multiple sites 	 Potential Cyber security concerns

Common Maintenance Strategies

Maintenance approach	Pros	Cons
Reactive	 minimal staff lowest initial investment 	 least efficient & cost-effective increased cost of unplanned downtime, labor, repair inefficient use of staff
Preventive	 more efficient & cost-effective: 12–18% savings over reactive less equipment failure/ more uptime 	 lack of prioritization unnecessary maintenance
Predictive	 highly efficient & cost-effective: 8–12% savings over preventive least equipment failure/ most uptime improved safety, comfort, productivity, efficiency compliance greater prioritization 	 highest initial investment (staff, training, diagnostics) savings potential not immediately seen by management
Predictive + analytics	 most efficient & cost-effective greatest prioritization streamlined operations quantifiable ROI to show management 	 requires robust BMS special expertise

How Does This Fit Together?

Using the Actionable Information Daily Critical \checkmark Ongoing Identify Prioritise Execute Periodic Validate

Reporting

Fault Summary Information

Alarm	Alarm Type	Equipment	Current State	Today's Total Time in Alarm (Min.)	# Of Occurrences	Total time in Alarm Over Period (Min.)
FCU3-1 Edh Fault	Alarm	FCU 3-1	Off	0	46	294
FCU1-11 fan flt	Alarm	FCU 1-11	Off	0	10	580
AHU8-4-10edh flt	Alarm	AHU 8-4 Zone 10	Off	0	5	26
AHU8-4-4 edh flt	Alarm	AHU 8-4 Zone 4	Off	0	5	31
AHU8-4-6 edh flt	Alarm	AHU 8-4 Zone 6	Off	0	4	25
AHU8-4-9 edh Flt	Alarm	AHU 8-4 Zone 9	Off	0	3	19
AHU8-4-8 edh Flt	Alarm	AHU 8-4 Zone 8	Off	0	3	19
VAV8-1 HP Alm	Alarm	AHU 6-8 VAV 1	Off	0	1	966

Examples

> Commercial office building. Hidden faults were identified and rectified.

 > Lab, office and education facility, only 5 years old. 52 VAV valves were found to be passing – enormous hidden energy costs

> Community centre, comprising rooftop package units where analytics was used to provide ongoing commissioning. ROI of 23%.

> Remote healthcare site where analytics outputs are assessed before travelling to site, resulting in reduced travel time and prompt rectification.

The world is getting smarter.

The advancement of analytics technology allows us to work smarter, not harder.

Make the most of your energy

Мегсі • Gracias • Danke • Спасибо • 谢谢 • شكرا • Dziękuję • Paldies • Баярлалаа Dhanybhad • Aguyje • Salamat • Mulţumesc • Murakoze Dankje • Obrigado • Aitah Vinaka • Grazie • 감사합니다 • Дзякую вам • Ďakujem Hvala • Tack • 多謝 • Дякую Asante 이 ついてい ひつけ • Благодаря • ありがと • Еυχαριστώ • Köszönöm • Х вала • Takk • Merci • Gracias • Danke • Спасибо • 谢谢 • Dziękuję • Paldies • Баярлалаа • Aguyje • Salamat • Mulţumesc • Murakoze Dankje • Obrigado • Aitäh

https://au.linkedin.com/in/cararyan1